

Heart and Circulation

Functions of the Circulatory System

- Transportation:
 - Respiratory:
 - Transport 0₂ and C0₂.
 - Nutritive:
 - Carry absorbed digestion products to liver and to tissues.
 - Excretory:
 - Carry metabolic wastes to kidneys to be excreted.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions of the Circulatory System (continued)

Regulation:

- Hormonal:
 - Carry hormones to target tissues to produce their effects.
- Temperature:
 - Divert blood to cool or warm the body.
- Protection:
 - Blood clotting.
- Immune:
 - Leukocytes, cytokines and complement act against pathogens.

Components of Circulatory System

- Cardiovascular System (CV):
 - Heart:
 - Pumping action creates pressure needed to push blood through vessels.
 - Blood vessels:
 - Permits blood flow from heart to cells and back to the heart.
 - Arteries, arterioles, capillaries, venules, veins.
- Lymphatic System:
 - Lymphatic vessels transport interstitial fluid.
 - Lymph nodes cleanse lymph prior to return in venous blood.

Composition of Blood

Plasma:

- Straw-colored liquid.
 - Consists of H₂0 and dissolved solutes.
 - Ions, metabolites, hormones, antibodies.
 - Na⁺ is the major solute of the plasma.
- Plasma proteins:
 - Constitute 7-9% of plasma.
 - Albumin:
 - Accounts for 60-80% of plasma proteins.
 - Provides the colloid osmotic pressure needed to draw H₂0 from interstitial fluid to capillaries.
 - Maintains blood pressure.

Composition of the Blood (continued)

- Plasma proteins (continued):
 - Globulins:
 - α globulin:
 - Transport lipids and fat soluble vitamins.
 - β globulin:
 - Transport lipids and fat soluble vitamins.
 - γ globulin:
 - Antibodies that function in immunity.

Fibrinogen:

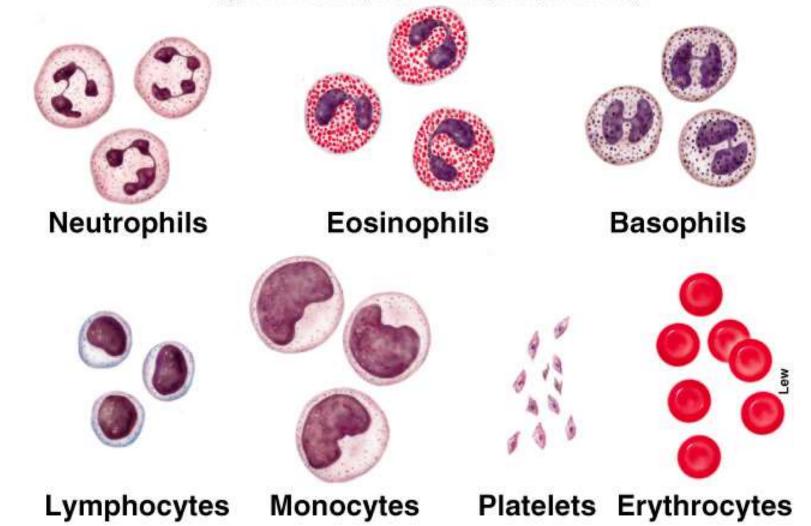
- Constitutes 4% of plasma proteins.
- Important clotting factor.
 - Converted into fibrin during the clotting process.

Composition of the Blood (continued)

- Serum:
 - Fluid from clotted blood.
 - Does not contain fibrinogen.
- Plasma volume:
 - Number of regulatory mechanisms in the body maintain homeostasis of plasma volume.
 - Osmoreceptors.
 - ADH.
 - Renin-angiotensin-aldosterone system.

- Flattened biconcave discs.
- Provide increased surface area through which gas can diffuse.
- Lack nuclei and mitochondria.
 - Half-life ~ 120 days.
- Each RBC contains 280 million hemoglobin with 4 heme chains (contain iron).
- Removed from circulation by phagocytic cells in liver, spleen, and bone marrow.

Contain nuclei and mitochondria.


- Move in amoeboid fashion.
 - Can squeeze through capillary walls (diapedesis).
- Almost invisible, so named after their staining properties.
 - Granular leukocytes:
 - Help detoxify foreign substances.
 - Release heparin.
 - Agranular leukocytes:
 - Phagocytic.
 - Produce antibodies.

Platelets (thrombocytes)

- Smallest of formed elements.
 - Are fragments of megakaryocytes.
 - Lack nuclei.
- Capable of amoeboid movement.
- Important in blood clotting:
 - Constitute most of the mass of the clot.
 - Release serotonin to vasoconstrict and reduce blood flow to area.
- Secrete growth factors:
 - Maintain the integrity of blood vessel wall.
- Survive 5-9 days.

Blood Cells and Platelets

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hematopoiesis

- Undifferentiated cells gradually differentiate to become stem cells, that form blood cells.
- Occurs in myeloid tissue (bone marrow of long bones) and lymphoid tissue.
- 2 types of hematopoiesis:
 - Erythropoiesis:
 - Formation of RBCs.
 - Leukopoiesis:
 - Formation of WBCs.

Erythropoiesis

- Active process.
 - 2.5 million RBCs are produced every second.
- Primary regulator is erythropoietin.
 - Binds to membrane receptors of cells that will become erythroblasts.
 - Erythroblasts transform into normoblasts.
 - Normoblasts lose their nuclei to become reticulocytes.
 - Reticulocytes change into mature RBCs.
 - Stimulates cell division.
- Old RBCs are destroyed in spleen and liver.
 - Iron recycled back to myeloid tissue to be reused in hemoglobin production.
- Need iron, vitamin B₁₂ and folic acid for synthesis.

Leukopoiesis

- Cytokines stimulate different types and stages of WBC production.
- Multipotent growth factor-1, interleukin-1, and interleukin-3:
 - Stimulate development of different types of WBC cells.
- Granulocyte-colony stimulating factor (G-CSF):
 - Stimulates development of neutrophils.
- Granulocyte-monocyte colony stimulating factor (GM-CSF):
 - Simulates development of monocytes and eosinophils.

RBC Antigens and Blood Typing

- Each person's blood type determines which antigens are present on their RBC surface.
- Major group of antigens of RBCs is the ABO system:
 - Type A:
 Only A antigens present.
 - Type B:
 Only B antigens present.

- Type AB:
 Both A and B
 - antigens present.
- •Type O:

 Neither A or B antigens present.

RBC Antigens and Blood Typing

Each person inherits 2 genes that control the production of ABO groups.

Type A:

May have inherited A gene from each parent.

May have inherited A gene from one parent and O gene from the other.

Type B:

May have inherited B gene from each parent.

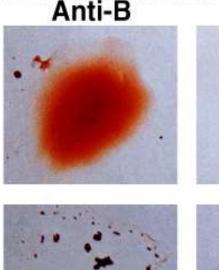
May have inherited B gene from one parent and O gene from the other parent. •Type AB:

 Inherited the A gene from one parent and the B gene from the other parent.

Type O:

Inherited O gene from each parent.

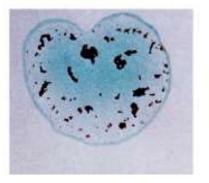
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Transfusion Reactions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- If blood types do not match, the recipient's antibodies Type A attach to donor's RBCs and agglutinate.
- Type O:
 - Universal donor:
 - Lack A and B antigens.
 - Recipient's antibodies cannot agglutinate the donor's RBCs.
- Туре В

Type AB


- Type AB:
 - Universal recipient:
 - Lack the anti-A and anti-B antibodies.
 - Cannot agglutinate donor's RBCs.

Anti-A

- Another group of antigens found on RBCs.
- Rh positive:
 - Has Rho(D) antigens.
- Rh negative:
 - Does not have Rho(D) antigens.
- Significant when Rh- mother gives birth to Rh+ baby.
 - At birth, mother may become exposed to Rh+ blood of fetus.
 - Mother at subsequent pregnancies may produce antibodies against the Rh factor.
- Erythroblastosis fetalis:
 - Rh- mother produces antibodies, which cross placenta.
 - Hemolysis of Rh+ RBCs in the fetus.

Function of platelets:

- Platelets normally repelled away from endothelial lining by prostacyclin (prostaglandin).
 - Do not want to clot normal vessels.
- Damage to the endothelium wall:
 - Exposes subendothelial tissue to the blood.

Blood Clotting (continued)

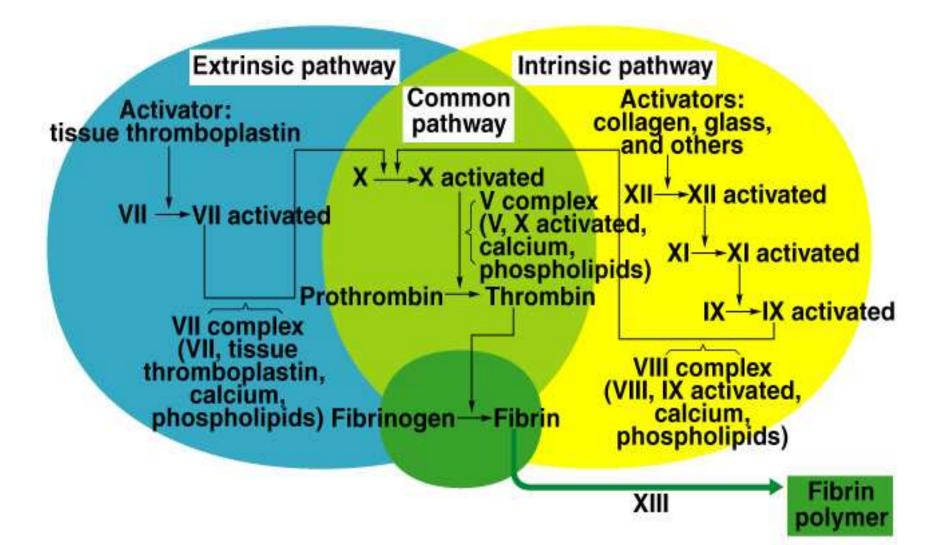
Platelet release reaction:

- Endothelial cells secrete von Willebrand factor to cause platelets to adhere to collagen.
- When platelets stick to collagen, they degranulate as platelet secretory granules:
 - Release ADP, serotonin and thromboxane A₂.
 - Serotonin and thromboxane A₂ stimulate vasoconstriction.
 - ADP and thromboxane A₂ make other platelets "sticky."
 - Platelets adhere to collagen.
 - Stimulates the platelet release reaction.
 - Produce platelet plug.
 - Strengthened by activation of plasma clotting factors.

Blood Clotting (continued)

- Platelet plug strengthened by fibrin.
- Clot reaction:
 - Contraction of the platelet mass forms a more compact plug.
 - Conversion of fibrinogen to fibrin occurs.
- Conversion of fibrinogen to fibrin:
 - Intrinsic Pathway:
 - Initiated by exposure of blood to a negatively charged surface (collagen).
 - This activates factor XII (protease), which activates other clotting factors.
 - Ca²⁺ and phospholipids convert prothrombin to thrombin.
 - Thrombin converts fibrinogen to fibrin.
 - Produces meshwork of insoluble fibrin polymers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Extrinsic pathway:

- Thromboplastin is not a part of the blood, so called extrinsic pathway.
- Damaged tissue releases thromboplastin.
 - Thromboplastin initiates a short cut to formation of fibrin.

Blood Clotting (continued)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dissolution of Clots

- Activated factor XII converts an inactive molecule into the active form (kallikrein).
 - Kallikrein converts plasminogen to plasmin.
- Plasmin is an enzyme that digests the fibrin.
 - Clot dissolution occurs.
- Anticoagulants:
 - Heparin:
 - Activates antithrombin III.
 - Coumarin:
 - Inhibits cellular activation of vitamin K.

Acid-Base Balance in the Blood

- Blood pH is maintained within a narrow range by lungs and kidneys.
- Normal pH of blood is 7.35 to 7.45.
- Some H⁺ is derived from carbonic acid.
- $H_20 + CO_2 \iff H_2CO_3 \iff H^+ + HCO_3^-$

Acid-Base Balance in the Blood

Types of acids in the body:

- Volatile acids:
 - Can leave solution and enter the atmosphere as a gas.
 - Carbonic acid.

$H_2O + CO_2 \iff H_2CO_3 \iff H^+ + HCO_3^-$

Nonvolatile acids:

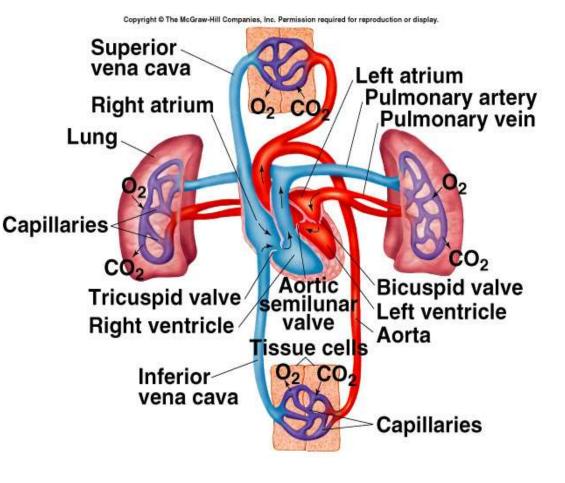
- Acids that do not leave solution.
 - Byproducts of aerobic metabolism, during anaerobic metabolism and during starvation.
 - Sulfuric and phosphoric acid.

Buffer Systems

- Provide or remove H⁺ and stabilize the pH.
- Include weak acids that can donate H⁺ and weak bases that can absorb H⁺.
- HCO_3^- is the major buffer in the plasma.
- $H^+ + HCO_3^- \implies H_2CO_3$
- Under normal conditions excessive H⁺ is eliminated in the urine.

Acid Base Disorders

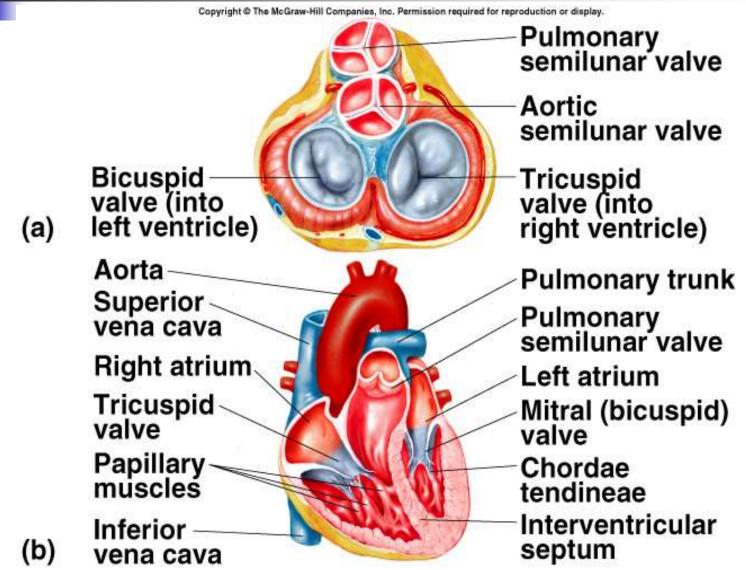
- Respiratory acidosis:
 - Hypoventilation.
 - Accumulation of CO₂.
 - pH decreases.
- Respiratory alkalosis:
 - Hyperventilation.
 - Excessive loss of CO₂.
 - pH increases.


- Metabolic acidosis:
 - Gain of fixed acid or loss of HCO₃⁻.
 - Plasma HCO₃⁻ decreases.
 pH decreases.
- Metabolic alkalosis:
 - Loss of fixed acid or gain of HCO₃⁻.
 - Plasma HCO₃⁻ increases.
 - pH increases.

рН

- Normal pH is obtained when the ratio of HCO₃⁻ to CO₂ is 20:1.
- Henderson-Hasselbalch equation:
- $pH = 6.1 + log = [HCO_3^-]$ [0.03P_{C02}]

Pulmonary and Systemic Circulations


- Pulmonary circulation:
 - Path of blood from right ventricle through the lungs and back to the heart.
- Systemic circulation:
 - Oxygen-rich blood pumped to all organ systems to supply nutrients.
- Rate of blood flow through systemic circulation = flow rate through pulmonary circulation.

Atrioventricular and Semilunar Valves

- Atria and ventricles are separated into 2 functional units by a sheet of connective tissue by AV (atrioventricular) valves.
 - One way valves.
 - Allow blood to flow from atria into the ventricles.
- At the origin of the pulmonary artery and aorta are semilunar valves.
 - One way valves.
 - Open during ventricular contraction.
- Opening and closing of valves occur as a result of pressure differences.

Atrioventricular and Semilunar Valves

Cardiac Cycle

- Refers to the repeating pattern of contraction and relaxation of the heart.
 - Systole:
 - Phase of contraction.
 - Diastole:
 - Phase of relaxation.
 - End-diastolic volume (EDV):
 - Total volume of blood in the ventricles at the end of diastole.
 - Stroke volume (SV):
 - Amount of blood ejected from ventricles during systole.
 - End-systolic volume (ESV):
 - Amount of blood left in the ventricles at the end of systole.

Cardiac Cycle (continued)

- Step 1: Isovolumetric contraction:
 - QRS just occurred.
 - Contraction of the ventricle causes ventricular pressure to rise above atrial pressure.
 - AV valves close.
 - Ventricular pressure is less than aortic pressure.
 - Semilunar valves are closed.
 - Volume of blood in ventricle is EDV.
- Step 2: Ejection:
 - Contraction of the ventricle causes ventricular pressure to rise above aortic pressure.
 - Semilunar valves open.
 - Ventricular pressure is greater than atrial pressure.
 - AV valves are closed.
 - Volume of blood ejected: SV.

Cardiac Cycle (continued)

Step 3: T wave occurs:

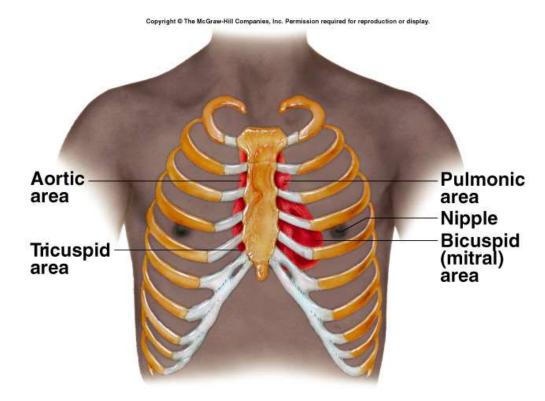
Ventricular pressure drops below aortic pressure.

Step 4: Isovolumetric relaxation:

- Back pressure causes semilunar valves to close.
 - AV valves are still closed.
 - Volume of blood in the ventricle: ESV.

Step 5: Rapid filling of ventricles:

- Ventricular pressure decreases below atrial pressure.
 - AV valves open.
 - Rapid ventricular filling occurs.


Cardiac Cycle (continued)

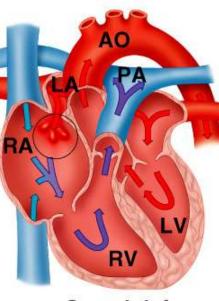
- Step 6: Atrial systole:
 - P wave occurs.
 - Atrial contraction.
 - Push 10-30% more blood into the ventricle.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Time (seconds) 0.2 04 0.6 0.8 0 ົລ120 (mmH 100 80 Ventricle Pressure 60 40 20 0 Systole Diastole Volume (ml 120 80 40 1st 2nd 3rd Heart sounds

Heart Sounds

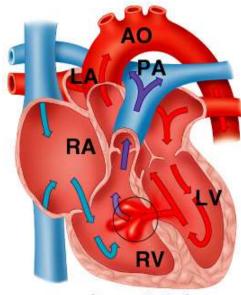
- Closing of the AV and semilunar valves.
- Lub (first sound):
 - Produced by closing of the AV valves during isovolumetric contraction.
- Dub (second sound):
 - Produced by closing of the semilunar valves when pressure in the ventricles falls below pressure in the arteries.

Heart Murmurs


- Abnormal heart sounds produced by abnormal patterns of blood flow in the heart.
- Defective heart valves:
 - Valves become damaged by antibodies made in response to an infection, or congenital defects.
- Mitral stenosis:
 - Mitral valve becomes thickened and calcified.
 - Impairs blood flow from left atrium to left ventricle.
 - Accumulation of blood in left ventricle may cause pulmonary HTN.
- Incompetent valves:
 - Damage to papillary muscles.
 - Valves do not close properly.
 - Murmurs produced as blood regurgitates through valve flaps.

Heart Murmurs

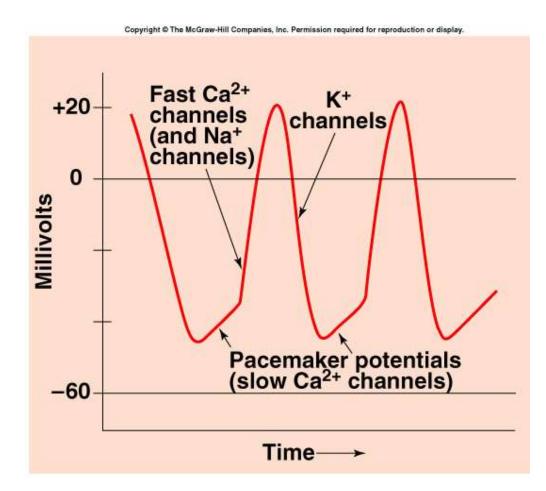
Septal defects:


Usually congenital.

- Holes in septum between the left and right sides of the heart.
- May occur either in interatrial or interventricular septum.
- Blood passes from left to right.

Septal defect in atria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Septal defect in ventricles

Electrical Activity of the Heart

SA node:

- Demonstrates automaticity:
 - Functions as the pacemaker.
- Spontaneous depolarization (pacemaker potential):
 - Spontaneous diffusion caused by diffusion of Ca²⁺ through slow Ca²⁺ channels.
 - Cells do not maintain a stable RMP.

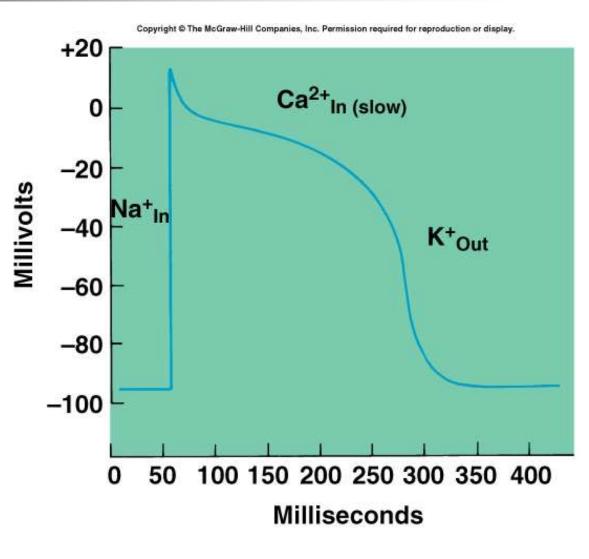
Pacemaker AP

Depolarization:

- VG fast Ca²⁺ channels open.
 - Ca²⁺ diffuses inward.
- Opening of VG Na⁺ channels may also contribute to the upshoot phase of the AP.

Repolarization:

- VG K⁺ channels open.
 - K⁺ diffuses outward.
- Ectopic pacemaker:
 - Pacemaker other than SA node:
 - If APs from SA node are prevented from reaching these areas, these cells will generate pacemaker potentials.

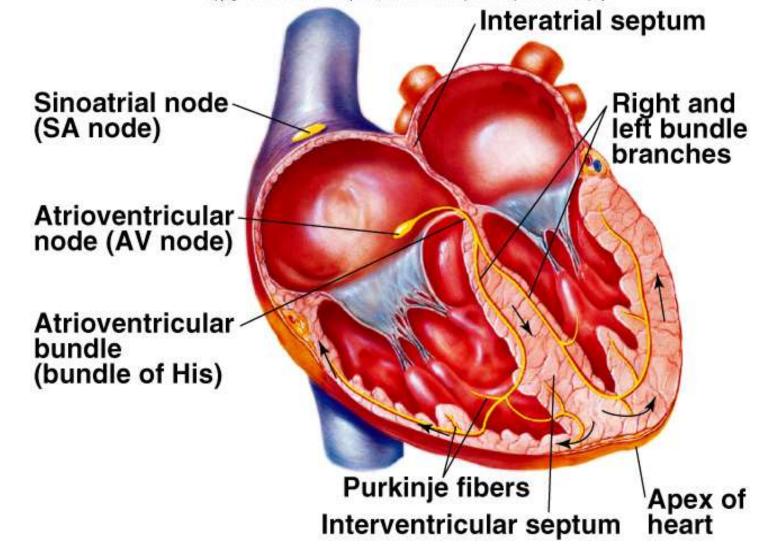

Myocardial APs

- Majority of myocardial cells have a RMP of –90 mV.
- SA node spreads APs to myocardial cells.
 - When myocardial cell reaches threshold, these cells depolarize.
- Rapid upshoot occurs:
 - VG Na⁺ channels open.
 - Inward diffusion of Na⁺.
- Plateau phase:
 - Rapid reversal in membrane polarity to −15 mV.
 - VG slow Ca²⁺ channels open.
 - Slow inward flow of Ca²⁺ balances outflow of K⁺.

Myocardial APs (continued)

• Rapid repolarization:

- VG K⁺ channels open.
- Rapid outward diffusion of K⁺.

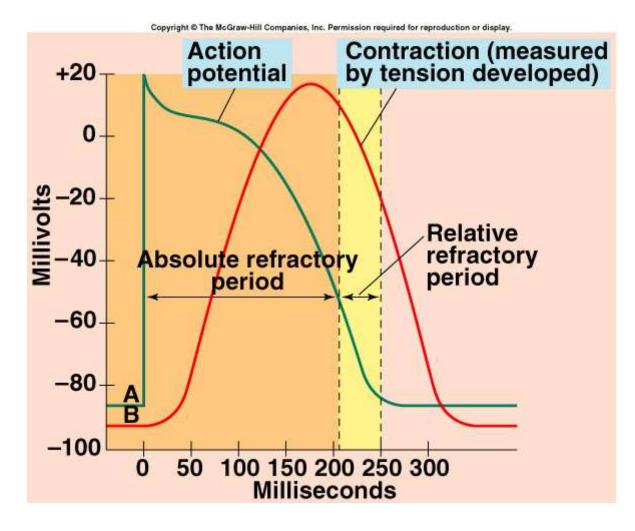


Conducting Tissues of the Heart

- APs spread through myocardial cells through gap junctions.
- Impulses cannot spread to ventricles directly because of fibrous tissue.
- Conduction pathway:
 - SA node.
 - AV node.
 - Bundle of His.
 - Purkinje fibers.
- Stimulation of Purkinje fibers cause both ventricles to contract simultaneously.

Conducting Tissues of the Heart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Conduction of Impulse

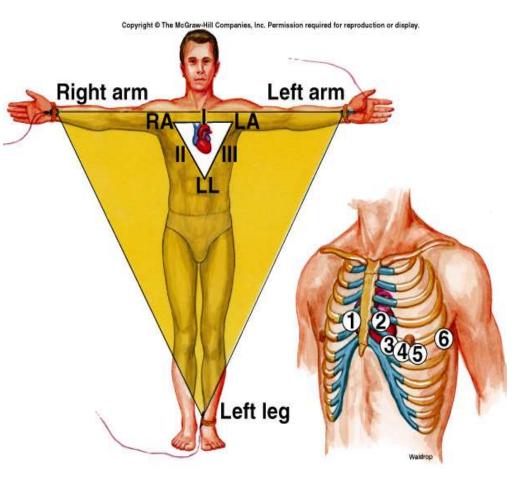
- APs from SA node spread quickly at rate of 0.8 - 1.0 m/sec.
- Time delay occurs as impulses pass through AV node.
 - Slow conduction of 0.03 0.05 m/sec.
- Impulse conduction increases as spread to Purkinje fibers at a velocity of 5.0 m/sec.
 - Ventricular contraction begins 0.1–0.2 sec. after contraction of the atria.

Refractory Periods

- Heart contracts as syncytium.
- Contraction lasts almost 300 msec.
- Refractory periods last almost as long as contraction.
- Myocardial muscle cannot be stimulated to contract again until it has relaxed.
 - Summation cannot occur.

Excitation-Contraction Coupling in Heart Muscle

- Depolarization of myocardial cell stimulates opening of VG Ca²⁺ channels in sarcolema.
 - Ca²⁺ diffuses down gradient into cell.
 - Stimulates opening of Ca²⁺-release channels in SR.
 - Ca²⁺ binds to troponin and stimulates contraction (same mechanisms as in skeletal muscle).
- During repolarization Ca²⁺ actively transported out of the cell via a Na⁺-Ca²⁺exchanger.


Electrocardiogram (ECG/EKG)

- The body is a good conductor of electricity.
 - Tissue fluids have a high [ions] that move in response to potential differences.
- Electrocardiogram:
 - Measure of the electrical activity of the heart per unit time.
 - Potential differences generated by heart are conducted to body surface where they can be recorded on electrodes on the skin.

 Does NOT measure the flow of blood through the heart.

ECG Leads

- Bipolar leads:
 - Record voltage between electrodes placed on wrists and legs.
 - Right leg is ground.
- Unipolar leads:
 - Voltage is recorded between a single "exploratory electrode" placed on body and an electrode built into the electrocardiograph.
 - Placed on right arm, left arm, left leg, and chest.
 - Allow to view the changing pattern of electrical activity from different perspectives.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright @ The McGraw-Hill Companies, Inc **ECG** (a) (c) P wave: Atria depolarize and contract (b) (d) QS (e) QRS (g) T wave: Ventricles complex: Ventricles repolarize depolarize and contract and contract Depolarization Repolarization

(f)

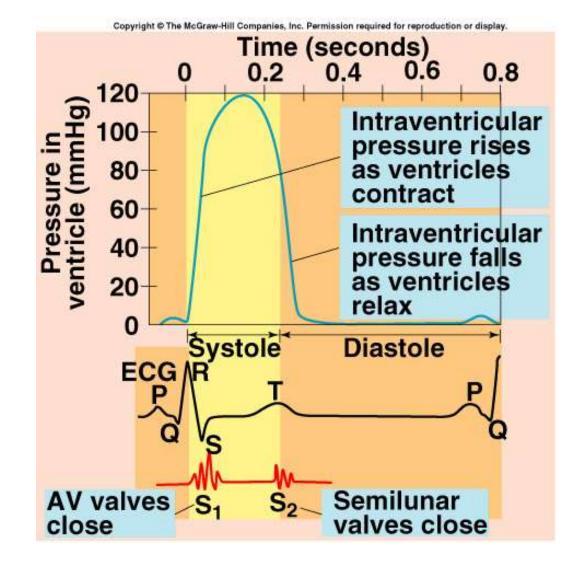
- P wave:
 - Atrial depolarization.

QRS complex:

- Ventricular depolarization.
- Atrial repolarization.

T wave:

Ventricular repolarization.


Correlation of ECG with Heart Sounds

First heart sound:

- Produced immediately after QRS wave.
- Rise of intraventricular pressure causes AV valves to close.

Second heart sound:

- Produced after T wave begins.
- Fall in intraventricular pressure causes semilunar valves to close.

Systemic Circulation

- Arteries.
- Arterioles.
- Capillaries.
- Venules.
- Veins.

Role is to direct the flow of blood from the heart to the capillaries, and back to the heart.

Walls composed of 3 "tunics:"

- Tunica externa:
 - Outer layer comprised of connective tissue.
- Tunica media:
 - Middle layer composed of smooth muscle.
- Tunica interna:
 - Innermost simple squamous endothelium.
 - Basement membrane.
 - Layer of elastin.

Blood Vessels (continued)

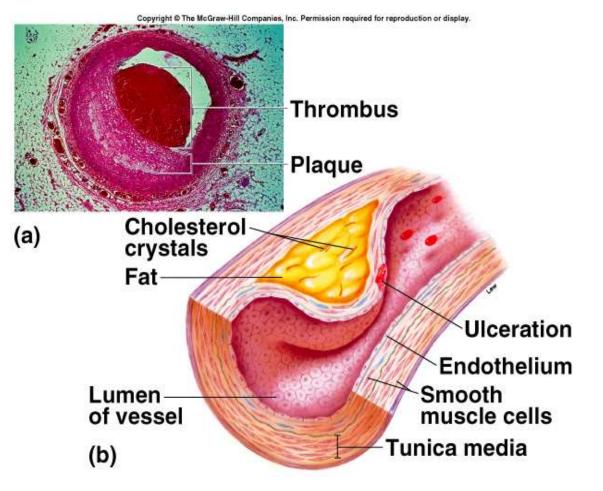
- Elastic arteries:
 - Numerous layers of elastin fibers between smooth muscle.
 - Expand when the pressure of the blood rises.
 - Act as recoil system when ventricles relax.
- Muscular arteries:
 - Are less elastic and have a thicker layer of smooth muscle.
 - Diameter changes slightly as BP raises and falls.
- Arterioles:
 - Contain highest % smooth muscle.
 - Greatest pressure drop.
 - Greatest resistance to flow.

Blood Vessels (continued)

- Most of the blood volume is contained in the venous system.
 - Venules:
 - Formed when capillaries unite.
 - Very porous.
 - Veins:
 - Contain little smooth muscle or elastin.
 - Capacitance vessels (blood reservoirs).
 - Contain 1-way valves that ensure blood flow to the heart.
- Skeletal muscle pump and contraction of diaphragm:
 - Aid in venous blood return of blood to the heart.

Types of Capillaries

- Capillaries:
 - Smallest blood vessels.
 - 1 endothelial cell thick.
 - Provide direct access to cells.
 - Permits exchange of nutrients and wastes.
 - Continuous:
 - Adjacent endothelial cells tightly joined together.
 - Intercellular channels that permit passage of molecules (other than proteins) between capillary blood and tissue fluid.
 - Muscle, lungs, and adipose tissue.
 - Fenestrated:
 - Wide intercellular pores.
 - Provides greater permeability.
 - Kidneys, endocrine glands, and intestines.
 - Discontinuous (sinusoidal):
 - Have large, leaky capillaries.
 - Liver, spleen, and bone marrow.



 Most common form of arteriosclerosis (hardening of the arteries).

- Mechanism of plaque production:
 - Begins as a result of damage to endothelial cell wall.
 - HTN, smoking, high cholesterol, and diabetes.
 - Cytokines are secreted by endothelium; platelets, macrophages, and lymphocytes.
 - Attract more monocytes and lymphocytes.

Atherosclerosis (continued)

- Monocytes become macrophages.
 - Engulf lipids and transform into foam cells.
- Smooth muscle cells synthesize connective tissue proteins.
 - Smooth muscle cells migrate to tunica interna, and proliferate forming fibrous plaques.

Cholesterol and Plasma Lipoproteins

- High blood cholesterol associated with risk of atherosclerosis.
- Lipids are carried in the blood attached to protein carriers.
- Cholesterol is carried to the arteries by LDLs (low-density lipoproteins).
 - LDLs are produced in the liver.
 - LDLs are small protein-coated droplets of cholesterol, neutral fat, free fatty acids, and phospholipids.

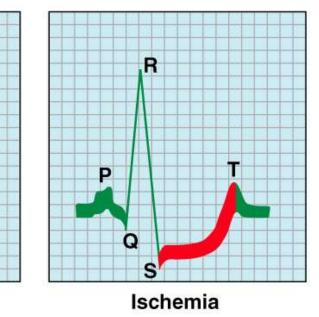
Cholesterol and Plasma Lipoproteins (continued)

- Cells in various organs contain receptors for proteins in LDL.
 - LDL protein attaches to receptors.
 - The cell engulfs the LDL and utilizes cholesterol for different purposes.
 - LDL is oxidized and contributes to:
 - Endothelial cell injury.
 - Migration of monocytes and lymphocytes to tunica interna.
 - Conversion of monocytes to macrophages.
 - Excessive cholesterol is released from the cells.
 - Travel in the blood as HDLs (high-density lipoproteins), and removed by the liver.
 - Artery walls do not have receptors for HDL.

R

S

Normal

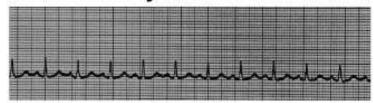

O

Ischemic Heart Disease

Ischemia:

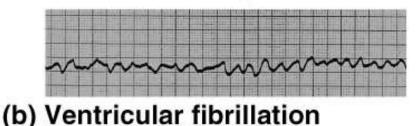
- Oxygen supply to tissue is deficient.
 - Most common cause is atherosclerosis of coronary arteries.
- Increased [lactic acid] produced by anaerobic respiration.
- Angina pectoris:
 - Substernal pain.
- Myocardial infarction (MI):
 - Changes in T segment of ECG.
 - Increased CPK and LDH.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Arrhythmias Detected on ECG

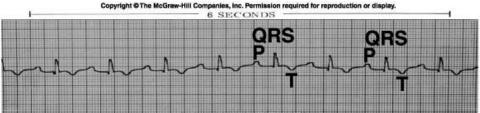
- Arrhythmias:
 - Abnormal heart rhythms.
- Flutter:
 - Extremely rapid rates of excitation and contraction of atria or ventricles.
 - Atrial flutter degenerates into atrial fibrillation.
- Fibrillation:
 - Contractions of different groups of myocardial cells at different times.
 - Coordination of pumping impossible.
 - Ventricular fibrillation is life-threatening.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

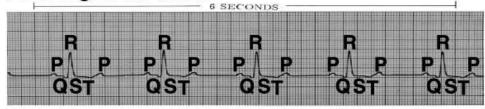

Sinus bradycardia

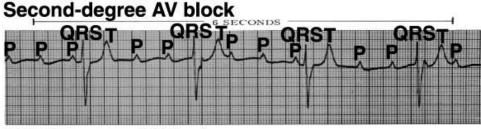
(a) Sinus tachycardia

Ventricular tachycardia



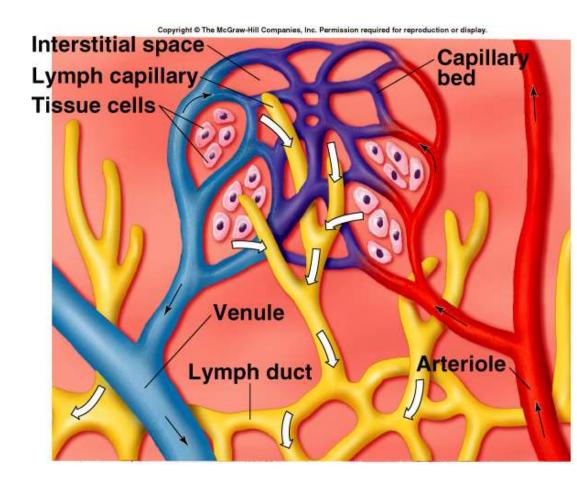
Arrhythmias Detected on ECG


- Bradycardia:
 - HR slower < 60 beats/min.
- Tachycardia:
 - HR > 100 beats/min.
- First–degree AV nodal block:
 - Rate of impulse conduction through AV node exceeds 0.2 sec.
 - P-R interval.
- Second-degree AV nodal block:
 - AV node is damaged so that only 1 out of 2-4 atrial APs can pass to the ventricles.
 - P wave without QRS.


Arrhythmias Detected on ECG

- Third-degree (complete) AV nodal block:
 - None of the atrial waves can pass through the AV node.
 - Ventricles paced by ectopic pacemaker.

First-degree AV block


Third-degree AV block

- 3 basic functions:
 - Transports interstitial (tissue) fluid back to the blood.
 - Transports absorbed fat from small intestine to the blood.
 - Helps provide immunological defenses against pathogens.

Lymphatic System (continued)

- Lymphatic capillaries:
 - Closed-end tubules that form vast networks in intercellular spaces.
- Lymph:
 - Fluid that enters the lymphatic capillaries.
 - Lymph carried from lymph capillaries, to lymph ducts, and then to lymph nodes.
 - Lymph nodes filter the lymph before returning it to the veins.

